1,554 research outputs found

    On single-copy entanglement

    Full text link
    The largest eigenvalue of the reduced density matrix for quantum chains is shown to have a simple physical interpretation and power-law behaviour in critical systems. This is verified numerically for XXZ spin chains.Comment: 4 pages, 2 figures, note added, typo correcte

    On the reduced density matrix for a chain of free electrons

    Full text link
    The properties of the reduced density matrix describing an interval of N sites in an infinite chain of free electrons are investigated. A commuting operator is found for arbitrary filling and also for open chains. For a half filled periodic chain it is used to determine the eigenfunctions for the dominant eigenvalues analytically in the continuum limit. Relations to the critical six-vertex model are discussed.Comment: 8 pages, small changes, Equ.(24) corrected, final versio

    On entanglement evolution across defects in critical chains

    Get PDF
    We consider a local quench where two free-fermion half-chains are coupled via a defect. We show that the logarithmic increase of the entanglement entropy is governed by the same effective central charge which appears in the ground-state properties and which is known exactly. For unequal initial filling of the half-chains, we determine the linear increase of the entanglement entropy.Comment: 11 pages, 5 figures, minor changes, reference adde

    Calculation of reduced density matrices from correlation functions

    Full text link
    It is shown that for solvable fermionic and bosonic lattice systems, the reduced density matrices can be determined from the properties of the correlation functions. This provides the simplest way to these quantities which are used in the density-matrix renormalization group method.Comment: 4 page

    Ising films with surface defects

    Full text link
    The influence of surface defects on the critical properties of magnetic films is studied for Ising models with nearest-neighbour ferromagnetic couplings. The defects include one or two adjacent lines of additional atoms and a step on the surface. For the calculations, both density-matrix renormalization group and Monte Carlo techniques are used. By changing the local couplings at the defects and the film thickness, non-universal features as well as interesting crossover phenomena in the magnetic exponents are observed.Comment: 8 pages, 12 figures included, submitted to European Physical Journal

    On reduced density matrices for disjoint subsystems

    Full text link
    We show that spin and fermion representations for solvable quantum chains lead in general to different reduced density matrices if the subsystem is not singly connected. We study the effect for two sites in XX and XY chains as well as for sublattices in XX and transverse Ising chains.Comment: 10 pages, 4 figure

    Density Matrices for a Chain of Oscillators

    Full text link
    We consider chains with an optical phonon spectrum and study the reduced density matrices which occur in density-matrix renormalization group (DMRG) calculations. Both for one site and for half of the chain, these are found to be exponentials of bosonic operators. Their spectra, which are correspondingly exponential, are determined and discussed. The results for large systems are obtained from the relation to a two-dimensional Gaussian model.Comment: 15 pages,8 figure

    Qualitative Analysis of Nonlinear Systems by the Lotka-Volterra Approach

    Get PDF
    In this paper, the authors summarize recent results obtained by applying the Lotka-Volterra approach to problems in nonlinear systems analysis. This approach was developed at the Mathematics and Cybernetics Division of the GDR Academy of Sciences (Berlin); various applications have been investigated in collaboration with the System and Decision Sciences Program at IIASA. This paper should also be seen as a contribution to the debate on future directions of research at IIASA, in particular possible research into the evolution of macrosystems

    Reduced density matrix and entanglement entropy of permutationally invariant quantum many-body systems

    Full text link
    In this paper we discuss the properties of the reduced density matrix of quantum many body systems with permutational symmetry and present basic quantification of the entanglement in terms of the von Neumann (VNE), Renyi and Tsallis entropies. In particular, we show, on the specific example of the spin 1/21/2 Heisenberg model, how the RDM acquires a block diagonal form with respect to the quantum number kk fixing the polarization in the subsystem conservation of SzS_{z} and with respect to the irreducible representations of the Sn\mathbf{S_{n}} group. Analytical expression for the RDM elements and for the RDM spectrum are derived for states of arbitrary permutational symmetry and for arbitrary polarizations. The temperature dependence and scaling of the VNE across a finite temperature phase transition is discussed and the RDM moments and the R\'{e}nyi and Tsallis entropies calculated both for symmetric ground states of the Heisenberg chain and for maximally mixed states.Comment: Festschrift in honor of the 60th birthday of Professor Vladimir Korepin (11 pages, 5 figures
    corecore